!-graphs with Trivial Overlap Are Context-free
نویسندگان
چکیده
String diagrams are a powerful tool for reasoning about composite structures in symmetric monoidal categories. By representing string diagrams as graphs, equational reasoning can be done automatically by double-pushout rewriting. !-graphs give us the means of expressing and proving properties about whole families of these graphs simultaneously. While !-graphs provide elegant proofs of surprisingly powerful theorems, little is known about the formal properties of the graph languages they define. This paper takes the first step in characterising these languages by showing that an important subclass of !-graphs—those whose repeated structures only overlap trivially—can be encoded using a (context-free) vertex replacement grammar.
منابع مشابه
On trivial ends of Cayley graph of groups
In this paper, first we introduce the end of locally finite graphs as an equivalence class of infinite paths in the graph. Then we mention the ends of finitely generated groups using the Cayley graph. It was proved that the number of ends of groups are not depended on the Cayley graph and that the number of ends in the groups is equal to zero, one, two, or infinity. For ...
متن کاملOn cycles in intersection graphs of rings
Let $R$ be a commutative ring with non-zero identity. We describe all $C_3$- and $C_4$-free intersection graph of non-trivial ideals of $R$ as well as $C_n$-free intersection graph when $R$ is a reduced ring. Also, we shall describe all complete, regular and $n$-claw-free intersection graphs. Finally, we shall prove that almost all Artin rings $R$ have Hamiltonian intersection graphs. ...
متن کاملIntersection graphs associated with semigroup acts
The intersection graph $mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the fi...
متن کاملColoring Triangle-Free Rectangle Overlap Graphs with $$O(\log \log n)$$ O ( log log n ) Colors
Recently, Pawlik et al. have shown that triangle-free intersection graphs of line segments in the plane can have arbitrarily large chromatic number. Specifically, they construct triangle-free segment intersection graphs with chromatic number Θ(log log n). Essentially the same construction produces Θ(log log n)-chromatic triangle-free intersection graphs of a variety of other geometric shapes—th...
متن کاملColoring Triangle-Free Rectangle Overlap Graphs with O(log log n) Colors
Recently, it was proved that triangle-free intersection graphs of n line segments in the plane can have chromatic number as large as (log log n). Essentially the same construction produces (log log n)-chromatic triangle-free intersection graphs of a variety of other geometric shapes—those belonging to any class of compact arcconnected sets in R2 closed under horizontal scaling, vertical scaling...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015